

一、何謂信度?

信度(reliability)是指對同一現象 重複測量時,所得到結果一致性的高低 程度。中文所稱的可靠性,以及英文的 Reproducibility、Repeatability等,都是 信度的同義複詞。影響信度的原因包括 不同人、工具造成的影響 (Interobserver),以及同一人、工具, 但不同時間或環境造成的影響 (Intraobserver)。

二、信度與效度的關係

除了信度之外,效度(validity)也 是我們常用來檢驗測量品質以及測量 結果使用的指標。效度是指一項工具在 測量其所欲測的特質或行為時所具有 的真確性,又可分為內在效度(internal validity) - 結果之正確性, 與外在效度 (external validity) — 結果向外推論之 廣度。信度與效度之間沒有絕對的相 關,信度好效度有可能不好,反之,效 度好,信度也不一定好。在這裡,我們 用一張圖來表示信度和效度之間的關 係 (圖 1)。圖中的黑點代表測量的結 果,若是重覆測量的結果一致性較高 時,黑點就會較為集中(信度好),若 一致性不高時,黑點則較分散(信度不 好);而圖中最中間的圓圈代表真正的 值,若黑點落在最中心的圓圈裏,才代 表測量到了真正的值,所以有可能測量 結果的一致性高,但確測不到真正的結 果(圖1左下)。

王文心

圖1:信度與效度意示圖

資料來源: 王榮德, 流行病學方法論

三、常用的信度指標

簡單介紹信度與效度的概念之 後,我們將進入今天的主題---我們常在 論文中見到作者使用的信度指標有哪 些?以及這些指標是如何計算的。本文 將包括測量內部一致性的 Cronbach's á 值;為檢驗某一種工具在重覆施測或兩 種工具同時施測時,其分類結果是否一 致的 Kappa 值;以及同一工具在兩個不 同時間重覆測量所使用的再測信度 ICCR。我們將這三種指標的重要特性整 理成表一,後文中將個別詳細介紹,並 以實際的例子來介紹如何使用 SAS、 SPSS 等統計軟體進行計算這些指標。

指標	使用時機	資料特性
Cronbach' s á	檢驗同一測量工具的內部一	只須施測一次
	致性	
Kappa	檢驗某一種工具在重覆施測	使用兩次測量的分類結果進行估算
	時的一致性,或兩種測量工具	
	在分類結果上的一致性	
ICCR	檢驗同一測量工具在兩個不	用於基本上呈穩定趨勢的特質,如
	同時間重覆施測時其分數的	智力、性向,需要測量兩次,並且
	穩定性	使用 <u>分數</u> 進行估算。

表一 常用的信度指標

(–) Cronbach' s á

Cronbach's á 主要是為檢驗測量工 具內部的同質性、穩定度或一致性而 設,所以不用重覆測量兩次。最早在測 量內部一致性時,是使用庫李 (Kuder-Richardson)信度,但是庫李 信度(公式1)只適用於測量結果以二 分法計分之測量,例如:考試結果正確 答案得分為1,非正確答案為0之情況。

$$KR\ 20 = \frac{k}{k-1} \left(1 - \frac{\sum pq}{SD^2} \right) \quad (公式 1)$$

k:試題總數

SD²: 為整個測驗的變異數

p: 樣本中答對該題答案之人數的百分 比,代表試題的難度。

q:樣本中答錯該題的人數百分比
∑pq:每一題試題答對與答錯人數百分比乘積的總合。

資料來源: 葛樹人, 心理測驗學

而為因應在測量心理或人格特質時 所使用的多重評分標準需要,Cronbach (1951)將庫李信度公式加以修改,以 $\sum (SDi)^2$ 取代 $\sum pq$ 而設計出下列公式 (公式2)、KR 20可視為Cronbach's á 的一個特例,即當試題答案以二分法計 分時, $\sum (SDi)^2$ 即為 $\sum pq$ 。

Cronbach's á
$$=\frac{k}{k-1}\left[1-\frac{\sum(SDi)^2}{SD^2}\right] \quad (\ \text{(\Lefty z)})$$

(SDi)²:團體中所有受測者在單一試題 上的變異數

SAS 和 SPSS 都可以直接計算 Cronbach's á值,程式語法和視窗點選 方式說明如后。

假設某一份五點量表有五個題目 (Q1-Q5),1分代表非常不同意,5分 代表非常同意,分別讓19位受試者從 1~5分中選取其認為最符合自己狀況的 分數,最後得到的資料如下(在此列出 部份資料):

範例一

Id	q1	q2	q3	q4	q5
001	2	3	4	2	3
002	3	2	5	3	3
003	1	4	4	2	2
004	2	3	3	1	4
005	3	3	2	2	3
006	4	4	3	3	5

1.SAS 語法

PROC CORR ALPHA;

VAR Q1-Q5;

RUN;

執行上述程式得到的結果共有四 部份:(1)這五個變項的基本統計量;(2) Cronbach's á 值;(3)刪除某一題目後的 Cronbach's á 值;以及(4)皮爾森 (Pearson)相關係數(在此不列出)。

(1)基本統計量

Simple Statistics

Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum
Q1	19	2.78947	1.18223	53.00000	1.00000	5.00000
Q2	19	2.89474	1.10024	55.00000	1.00000	5.00000
Q3	19	2.78947	1.22832	53.00000	1.00000	5.00000
Q4	19	2.42105	1.12130	46.00000	1.00000	5.00000
Q5	19	3.21053	1.03166	61.00000	2.00000	5.00000

(2) Cronbach's á值

Cronbach Coefficient Alpha

Variables	Alpha
Raw	0.416414

(3) 刪除某一問題後的Cronbach's á值

Cronbach Coefficient Alpha with Deleted Variable

	Raw Vari	ables	Standardized Variables		
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	
Q1	0.411550	0.193122	0.421926	0.193376	
Q2	0.278383	0.314530	0.283754	0.309385	

研究方法專題:淺談信度

Q3	0.004178	0.523535	005105	0.516574
Q4	0.387659	0.224100	0.379462	0.230268
Q5	0.045195	0.472242	0.048854	0.481272

2.SPSS 語法:

RELIABILITY

/VARIABLES=q1 q2 q3 q4 q5

/FORMAT=NOLABELS

```
/SCALE(ALPHA)=ALL/MODEL=ALPHA
```

/SUMMARY=TOTAL MEANS VARIANCE COV CORR .

3.SPSS 視窗點選方式:

從功能選單的「Analyze」進入,選「Scale」,再選擇「Reliability analysis」後, 便出現下面的畫面。

將同一量表的變項選到右邊,並進入「Option」設定後,執行結果依序為(1) 基本統計量;(2)刪除某一變項(題目)後的 Cronbach'sá 值;以及(3)Cronbach'sá 值。得到的結果跟使用 SAS 統計軟體是一樣的。

(1)基本統計量

RELIABILITY ANALYSIS - SCALE (ALPHA)

Item Means	Mean	Minimum	Maximum	Range	Max/Min	Variance
	2.8211	2.4211	3.2105	.7895	1.3261	.0798
Item Variances	Mean	Minimum	Maximum	Range	Max/Min	Variance
	1.2877	1.0643	1.5088	.4444	1.4176	.0294
Inter-item						
Covariances	Mean	Minimum	Maximum	Range	Max/Min	Variance
	.1608	2865	. 4912	.7778	-1.7143	.0568
Inter-item						
Correlations	Mean	Minimum	Maximum	Range	Max/Min	Variance
	.1252	2261	.3982	.6243	-1.7609	.0355

(2)刪除某一問題後的Cronbach's á值

Item-total Statistics

	Scale	Scale	Corrected		
	Mean	Variance	Item-	Squared	Alpha
	if Item	if Item	Total	Multiple	if Item
	Deleted	Deleted	Correlation	Correlation	Deleted
Q1	11.3158	5.8947	.4115	.2080	.1931
Q2	11.2105	6.8421	.2784	.1957	.3145
Q3	11.3158	8.1170	.0042	.1162	.5235
Q4	11.6842	6.2281	.3877	.2385	.2241
Q5	10.8947	8.3216	.0452	.1679	.4722

(3)Cronbach's á值

Almha - 1161	Standardized item alpha -	4171
Reliability Coefficients	5 items	

Cronbach's á的最低接受標準值, Merchant(1985)認為是最低可接受的限度為 0.5-0.6之間。

(二) Kappa 值

Kappa 值測量的也是一致性,但與 Cronbach's á不同點在於 Kappa 需要測 量兩次,比較的是兩種不同工具在重覆 測量,或同一種工具不同時間測量分類 結果的一致性。估計 Kappa 值之前,應 事先定義測量結果分類的標準,例如: 如何將測量分為「及格」與「不及格」、 「陽性」或「陰性」等類別。

簡易估計 Kappa 值的方法如公式 3-1 到公式 3-3。PA 代表"同意百分比" (percent agreement),用來計算兩測量 工具(或同一工具重覆測量)在結果上 完全一致的百分比。同意百分比愈高, 測量之信度便愈高。

測量

結果 2(J)

$P_A = \sum^k$	N _{ij} / N	(同意百分比)(公式	3-1)		1	2	 k	
i=j=	k			1	N ₁₁	N ₁₂	 N _{1k}	N_{1}
$Po = \sum_{k=1}^{k} i$	$Ni.N.j/N^2$	(公式 3-2)		2	N ₂₁	N ₂₂	 N _{2k}	N _{2.}
<i>i=j=k</i>			測量		:	:		
$K = \frac{(P_A - P_A)}{(1 - P_A)}$	$\frac{-P_o}{P_o}$	(公式3-3)	結果 1(1)	k	N_{k1}	N _{k2}	N _{kk}	N _k .
(1-	10)				N.1	N.2	 N _{.k}	N

在此舉例說明,假設我們用兩種 方法來測量某社區居民對登革熱病毒 的保護力(範例二),陽性(+)代表有 保護力,陰性(-)代表沒有保護力,兩 種測量的結果如下所示;兩種方法測量 結果皆為陽性的有 10 位,皆為陰性的 有 50 位, A 方法為陽型 B 方法為陰性 的有 10 位, A 方法陰性 B 方法陽性的 有 30 位。依上述公式,便可得到這兩 種工具測量結果的一致性為 0.091,一 致性並不理想。

範例二

$$P_A = \frac{10 + 50}{100} = 0.6$$

$$P_o = \frac{40 \times 20 + 60 \times 80}{100^2} = 0.56$$

$$K = \frac{0.6 - 0.56}{1 - 0.56} = 0.091$$

我們再來看一個複雜一點的例 子,當測量的分類結果不只一類時,同 樣也是按照上述的公式,將數值代入計 算即可。在範例三中,A君在檢查血液 中血紅素時,對同一檢體進行兩次的測 量,以瞭解其操作的穩定性,結果如下 表所示。第一次和第二次血紅素測量結

範例三:

		9	10	11	12	13	14	15	
俥	9	5	2						7
素數	10	1	8	3	4				16
ΠÅΙ	11		1	6	15	3			25
豊む	12	2	1	2	15	5			25
三三三	13				9	10	4		23
次 一	14				4	2	7	3	16
箫	15					1	8	4	13
		8	12	11	47	21	19	7	125

果都是9的有5個檢體,第一次測量為 10、第二次測量得到9的有1個檢體, 依此類推。最後計算得出 Kappa 值為 0.33,表示同一檢體測量結果的一致性 並不佳,A君可能需要對其操作過程加 以檢討,以提高測量的一致性。

$$P_A = \frac{5+8+6+\dots+7+4}{125} = 0.44$$

$$P_o = \frac{7 \times 8 + 16 \times 12 + \dots + 13 \times 7}{125^2} = 0.16$$

$$K = \frac{(P_A - P_o)}{(1 - P_o)} = \frac{0.44 - 0.16}{1 - 0.16} = 0.33$$

Kappa 值也可以直接用 SAS 或 SPSS 求得,但須注意原始資料的格式 須為「0」與「1」。為了讓讀者瞭解資 料格式,我們使用範例二的原始資料進 行說明,先介紹 SPSS 視窗點選的方 式,再分別示範如何撰寫 SPSS 及 SAS 的語法。

1.SPSS 視窗點選

資料格式如下圖的最左方, obs1 和 obs2 分別是 A 方法和 B 方法, 資料 格中 0 代表陰性, 1 代表陽性。計算時 先從功能選單的「Analyze」進入,選 「 Descriptive Statistics」後再選擇 「 Crosstabs」, 便會跳出「Crosstab」的 對話視窗(如下圖)。

研究方法專題:淺談信度

最後後點選「Statistics..」,勾選「Kappa」及其他相關統計值,如「McNemar」 等。執行結果如下(只擇取部份),三個表依序分別是與例1相同的交叉列聯表、 含 McNemar Test 結果的卡方檢驗結果、以及 Kappa 值。

OBS2 * OBS1 Crosstabulation

Count

	OB		
	0	1	Total
OBS2 0	50	10	60
1	30	10	40
Total	80	20	100

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	1.042 ^b	1	.307		
Continuity Correction a	.586	1	.444		
Likelihood Ratio	1.026	1	.311		
Fisher's Exact Test				.320	.221
Linear-by-Linear Association	1.031	1	.310		
McNemar Test				.002 ^c	
N of Valid Cases	100				

a. Computed only for a 2x2 table

b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.00.

c. Binomial distribution used.

Symmetric Measures

		Value	Asymp. Std. Error ^a	Approx. T ^b	Approx. Sig.
Interval by Interval	Pearson's R	.102	.102	1.016	.312 ^c
Ordinal by Ordinal	Spearman Correlation	.102	.102	1.016	.312 ^c
Measure of Agreement	Kappa	.091	.091	1.021	.307
N of Valid Cases		100			

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.

/TABLES=obs2 BY obs1

/FORMAT= AVALUE TABLES

2.SPSS 語法

CROSSTABS

The FREQ Procedure

Table of OBS2 by OBS1OBS2OBS1

/STATISTIC=CHISQ	CORR	KAPPA			Freq	luency	
MCNEMAR					0	1	Total
/CELLS= COUNT .							
				0	50	10	60
				1	30	10	40
3.SAS 語法							
			Total		80	20	100

DATA A;

INFILE 'D:\KAPPA.TXT'; INPUT OBS1 OBS2;

PROC FREQ;

TABLE OBS2*OBS1/AGREE; RUN;

執行後可以得到與 SPSS 一樣的結果:

Statistics for Table of OBS2 by OBS1

McNen	nar's Test	
Statistic (S)	10.0000	1
Pr > S	0.0016	1

研究方法專題:淺談信度

Simple Kappa Coefficient

Kappa	0.0909
ASE	0.0911
95% Lower Conf Limit	-0.0876
95% Upper Conf Limit	0.2695

Sample Size = 100

當 Kappa 值等於 1 時,代表完全一 致,K>0.80 表一致性佳,而 K<0.4 時, 則代表一致性不好。

4. McNemar's test

在上面的計算中,讀者可以看到 McNemar 檢定的結果,其檢定的結果與 Kappa 值代表的意義是一樣的。 McNemar 氏考驗又稱為非獨立樣本比 率數的卡方考驗,或稱為相依樣本的卡 方檢定,可用來檢驗重複量數之資料, 例如:看不同測量工具對同一樣本測量 的結果是否一致,或是看同一樣本,前 後兩次反應之異同。

Observer2

 $c_{MCN} = \frac{\left(X - Y\right)^{b}}{X + Y} \quad or \quad c_{MCN} = \frac{\left(X - Y\right)^{-1}}{X + Y}$ $c_{MCN} = \frac{\left(X - Y\right)}{\sqrt{X + Y}}$ $\left(\Delta \overline{x} + 4 \right)$

我們以先前舉過的範例二來做說 明, McNemar 檢定的虛無假設(Null hypothesis) 是假設兩種方法測量到的結 果不會有差異,但是當我們計算結果發 現 p 值小於 0.05 時,便推翻虛無假設, 亦即不同的測量方法所得到的測量結果 是不一樣的,與我們之前使用 Kappa 值 得到的結論—兩種方法一致性不佳是一 樣的。同樣的,也與上面以統計軟體得 到的計算結果是一樣的。

範例:

H₀:不同測量方法不會對測量結果造成差異。 H_{A:}不同測量方法對測量結果造成差異。

代入公式4計算:
$$c_{MCN} = \frac{30-10}{\sqrt{30+10}} = 3.162$$
 p=0.002

(三) ICCR--再測信度(test-retest reliability)

一些人類特質,例如:智力、性向、 人格等基本上是穩定的,故在測量這類 心理特質時,測驗分數具有高度穩定性 是必要的。最適宜的相隔時間隨測驗目 的和性質而異,少者兩週、多則六個月 到1、2年。

雖然 Kappa 值也可用來當然再測 信度的指標,但是 Kappa 處理的是分類 過後的測量結果,像是智力、性向、人 格等就不適合用 Kappa 值來做為信度的 指標。因此像是以皮爾森積差相關來處 理兩次測量的分數,將所得到的係數做 為再測信度,或是用我們這裡將要介紹 的 ICCR (Intraclass Correlation Coefficient Reliability),都可以用來評估 的穩定度。

在 One-way Random Effects Model (以同一種工具評估所有病人)的假設 情況下, ICCR 值可由下列公式計算:

$$r_{1} = \hat{s}^{2}_{g} / (\hat{s}^{2}_{g} + \hat{s}^{2}_{e}) = \frac{MSB - MSW}{MSB + (n_{0} - 1)MSW}$$

(公式 5)

MSB : mean of between sum of square MSW : mean of within sum of square

因為通常是比較兩個不同時間點 測量結果的一致性,所以 n₀=2,目前尚 無法直接從 SAS 和 SPSS 下指令計算 ICCR,但是可先進行 ANOVA 運算,得 到公式5中所需要的 MSB 和 MSW 數值 後,再代入公式計算ICCR 值。而在ICCR 值的判讀上,<0.40 為信度不佳,0.4-0.75 之間良好,>0.75 極佳。

結語

本文中我們介紹了三種常用的信 度指標,相對於沒有提到的折半信度、 複本信度等,這三種指標都有計算簡 便、容易實行、限制較少的特點。然而 信度要達到多高才能被接受呢?這是一 個不易回答的問題,主要因為研究者的 需要不同,很難訂定一個適用於全部狀 況的單一標準。

測量工具本身、受測樣本的變異 性、施測者、施測環境等等因素,都會 影響信度的高低,大致而言,一般認為 信度係數達 0.4 以上屬於良好,要達到 0.8 以上才算極佳,但是為了要將信度從 0.4 提高到 0.8,可能需要花費許多的時 間與金錢去嘗試,是否有其必要性,則 值得多方思考。

理想的測量應具備良好的信度和 效度,藉由信度和效度的高低,研究者 可以對該次測量的品質加以分析,由於 目前已經發展的信度測量方式有許多 種,我們在呈現研究結果時,應詳細說 明測量信度的方式並列出結果,而讓其 他研究者依其特定目的來決定信度是否 足夠,並據此判斷如何使用資料。

參考書目:

葛樹人 , 民 77 , 心理測驗學。台北 : 桂 冠圖書公司。

邱皓政,民 89,社會與行為科學的量化 研究與統計分析 SPSS 中文視窗版資料 分析範例解析。台北:五南圖書出版公 司。

Shoukri, M.M. (1999) Statistical Methods for Health Sciences, 2nd ED., pp. 18-107. Boca Raton, Fla. CRC Press, New York .

Edward G. Carmines. and Richard A.Zeller (1979) "Reliability and Validity Assessment." Sage University Paper Series on Quantitative Application in the Social Sciences,07-017. Beverly Hills and London: Sage Pubns.