資料整理與檢誤經驗談

以 SPSS 程式進行不合理值檢誤

蘇婉雯

數據資料檔的建立,必須包括資料 檢誤的工作才能算完成。嚴謹的資料檢 誤,可以增進資訊的正確性以及資料的 可用性。一般來說,資料發生錯誤的來 源可能來自於訪員、督導、過錄者或鍵 入資料者。不過,有些時候只是程式語 法錯誤,而造成資料錯誤的假象。基本 的資料檢誤工作包括:不合理值檢誤及 邏輯檢誤兩種。本期以 SPSS 統計軟體 介紹不合理值的檢誤工作。

大部份變項都有其合理的值域或 分佈,而超出這些值域、或落在合理分 佈以外的觀察值,往往起因於建檔過程 中發生的錯誤。一般而言,界外值 (Outlier)亦屬於不合理值。茲將整理工 作內容說明於下:

一、類別變項(Categorical Variables)

類別變項的合理數值應該是幾個 固定的類別代碼,包含研究者設計的 「跳答碼」、「遺漏值代碼」等。如果 類別變項的資料中有任何數值非屬這 些固定代碼,即為不合理值。研究者應 該查明這些不合理值的來源,並做適當 的修改或處理。

例1:【原始問卷】如下:

請問您父親的籍貫是

 市省閩南人
 本省国家人
 本省客家人
 大陸各省市
 原住民
 其他

表1-1【次數分配結果】如下:

3您父親的籍貫是哪裡?

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	86	4.4	4.4	4.4
	1	1424	72.7	72.7	77.0
	2	166	8.5	8.5	85.5
	3	236	12.0	12.0	97.6
	4	34	1.7	1.7	99.3
	5	2	.1	.1	99.4
	6	5	.3	.3	99.6
	7	7	.4	.4	100.0
	Total	1960	100.0	100.0	

從上面的次數分配結果表中,不容 易發現是否有不合理值存在,必須核對 問卷或過錄編碼簿之內容才能得知。如 果能在資料檔或程式中補上選項數值說 明(value label),則能夠輕易的找出不合 理值。

【自撰語法】- 選項數值說明

value label

- a3 1 "本省閩南人" 2 "本省客家人" 3 "大陸各省市" 4 "原住民" 5 "其他"
 - 7 "不知道".

【點選視窗】- 選項數值說明

於SPSS 10.0版的Data Editor視窗中, 選擇「Variable View」頁面,點選該變 項之values欄,出現下面視窗並依序鍵 入選項數值說明。

圖1. 點選視窗之選項數值說明

Value Labels		? ×
Valas Labal	·	OK
Valgat	7	Causel
Antif Taser	Li stratione i s	Beip
Deres 1	1 - 平看描容至人。 2 - "本看描容子人" 3 - "大陸省省市" 4 - "原住民" 5 - "其他"	

建立選項數值說明後,再執行次數分 配分析,可得結果如表1-2:

表1-2

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	86	4.4	4.4	4.4
	₁ 本省閩南人	1424	72.7	72.7	77.0
	2 本省客家人	166	8.5	8.5	85.5
	3 大陸各省市	236	12.0	12.0	97.6
	4 原住民	34	1.7	1.7	99.3
	₅ 其他	2	.1	.1	99.4
	6	5	.3	.3	99.6
	₇ 不知道	7	.4	.4	100.0
	Total	1960	100.0	100.0	

顯然「0」、「6」對於這個變項而言 都是不合理的界外值。而「7」是原計 畫設計的「不知道」編碼,單從問卷中 無法得知此編碼。其中,選「6」的人 很少,只有兩名,可能是過錄員或鍵入 資料者所發生的錯誤;而「0」,則可能 為「跳答+遺漏值」混合使用的代碼, 該研究沒有明確定義「0」並區分跳答 及遺漏值的結果。一般而言,資料檔中 亦需要建立跳答、遺漏值等特殊編碼的 選項數值說明。

類別變項的不合理檢誤,最方便的 方法就是執行「次數分配」。只要將該 變項做「次數分配」,則資料的值域、 分佈就會一覽無遺。如果需要進一步檢 誤可疑資料的編號(ID),則需再配合其 他程式。下面以 SPSS 語法說明如何挑 出不合理值。

《步驟一》執行次數分配分析

【自撰語法】

可以利用「Frequencies

Variable=varname1」語法執行。

【點選選單】

選取「Analyze Descriptive Statistics Frequencies」再點選要分析的變項 名稱

《步驟二》挑出可疑值的 ID

【自撰語法】

可以透過下列語法,將可疑值及其 ID 列出。

Temporary.

Select If Any(Varname1, n1,n2,..). List id Varname1.

【點選選單】

可以點選「Data Select Cases」再到 對話視窗中設定條件,即可使工作中 的資料檔僅剩下篩選過、符合條件的 觀察值。此時,點選「Analyze Descriptive Statistics Frequencies」, 再選定「ID」等編碼變項,即可得到 可疑值的 ID 清單。

此外,有關年齡、年度、月份、小 孩數 等變項,皆因題目與受訪者的不 同,而有不同的合理值域。

二、連續性變項

檢查連續性變項的基本方法,可以

由簡單的描述性統計值(平均值、標準 差、極大值、極小值)、分佈圖等幾方面 來看。

例 2-1:以下舉一般性的觀念為範例:

以平均值而言,某社區青年收縮壓 平均值只有 70 mmHg,並不符合一般 生理分佈。 以標準差而言,某社區青年收縮壓 標準差高達 50 mmHg,亦不符合一般 文獻的記載。

以極大值和極小值來看,學童身 高落在80到170公分以外者,亦不符 合學童正常生理狀態。

圖 2:本例以分佈圖來檢查界外值,資料為 SPSS 軟體所附的資料範例。

從圖 2 的分佈看出遠離集中分佈的 觀察值(outlier)。上述為一個腫瘤直徑的 散點分佈圖,我們可以看出有兩個點各 為 10 公分、50 公分左右,遠遠離開一 般腫瘤大小的分佈範圍。其資料的正確 性值得查驗。

如果這是一個罕見的病例、嶄新的 發現,也必須建立在資料正確性無庸置 疑的基礎上!所以,資料檢誤是量化研 究重要的程序之一。

【自撰語法】

可以使用「EXAMINE VARIABLES = varname/PLOT =BOXPLOT.」語法,即可同時得 到詳盡的描述性統計值(包括:平 均值、標準差、峰度、偏度、極 大值、極小值、樣本數等),以 及箱型圖(box plot)。另外,可以 依照專業知識設定連續變項合理

的值域,做界外值檢誤,語法如 下:

Temporary.

Select if (varname<100 or

varname>500).

List id var.

如此可將varname這個變項超過 500或低於100者全列到output檔 中,並將ID一併列出,方便查明。

【點選選單】

可以點選「Analyze Descriptive Statistics Explore」,將要分析的 變項選至「Dependent List」中, 計算平均值、標準差、極大值、 極小值、樣本數;再點選「Graphs Boxplot」(設定 Summaries of separate variables),可得到箱型圖。

在上述方法中所挑出的個案編 號,應詳細檢查原始回卷的內容後,將 錯誤的資料更正,整個不合理值檢查的 工作才告完成。如果資料鍵入時發生錯 誤,而錯誤的資訊仍在合理值範圍中, 則相當不容易找出。這就是為什麼需要 double key in 後再核對兩資料檔是否一 致。嚴謹的資料整理工作,可以早期發 現資料的錯誤,並早期修改,以免影響 分析結果。不合理值檢查工作更應該於 邏輯檢查之前先執行。在下一期通訊 中,我們將介紹如何以 SPSS 進行邏輯 檢查的方法,敬請期待。

